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1. SU(∞) matrix models: Gross-Witten model as a tri-critical point.
AMMPR: spinoidal temp. = Hagedorn temp.

2. SU(3) renormalized Polyakov loops from the lattice.

3. Lattice: SU(3) deconfining transition close to the SU(∞) Gross-Witten point.
        

                 But unnatural to be close to a tri-critical point.

Consider a “pure” SU(N) gauge theory, no dynamical quarks.
Rigorously, a deconfining phase transition at a temperature T.



Mean field theory: Z(N) vector

Consider a scalar field invariant under a global U(1) symmetry:

Look for spontaneous breaking of U(1) symmetry through

Start with the most general potential invariant under U(1):

φ→ eiθ φ

〈φ〉 #= 0

VU(1) = m2|φ|2 + λ4(|φ|2)2 + λ6(|φ|2)3 + . . .

VZ(N) = λN (φN + (φ∗)N )

Can always fit        , versus the temperature T, as the minimum of a potential.  
  

         But how do the mass and couplings depend upon T?

Mean field theory: mass^2 linear in T, coupling constants don’t change with T

If only Z(N) symmetry,                            the potential also includesφ→ e2πi/Nφ

〈φ〉



Mean field phase diagram
For Z(3), cubic term => transition always first order.  
When N≠3, all phase diagrams look alike:  

Lines of 1st and 2nd order transitions meet at a tri-critical point 

m2 →
X

λ4 ↑
2nd order line  =>

1st order line: -------------->

Tri-critical point:

〈φ〉 = 0
〈φ〉 #= 0

m2 = 0 , λ4 > 0

m2 > 0 , λ4 < 0

m2 = λ4 = 0

VU(1) = m2|φ|2 + λ4(|φ|2)2 + λ6(|φ|2)3 + . . .



Mean field theory: SU(N) matrix
Consider the matrix for a Wilson loop 

In the fundamental representation,     is a SU(N) matrix: 

Transforms under local SU(N) transf.’s, Ω, as:                                          

Can have a global Z(N) symmetry  (“topological”)
which breaks without breaking SU(N).

Usual order parameter: loop in fundamental representation:

T ≠ 0: thermal Wilson line => Polyakov loop.  Phases:

Z(N) symmetric = confined:               

      Z(N) sym. broken = deconfined:

Loop ~ (trace) “test” quark propagator.  Deconfining transition at T_d.  

L = Peig
∮

Aµdxµ

L→ Ω† LΩ

L→ e2πi/N L

L†L = 1 , det L = 1L

! =
1
N

tr L

〈!〉 #= 0 , T > Td

〈!〉 = 0 , T < Td



Matrix mean field theory

Matrix model = a matrix in the measure:

Naturally obtain loops in all representations (unlike Potts model).  Adjoint loop:

Loop in rep. R                   /dim. R.   Z(N) charge, mod N: 

Most general potential sum of Z(N) neutral loops:

                                                                                  

Naively: adjoint loop is a mass term, other Z(N) neutral loops higher couplings.

In the deconfined phase, all loops condense.  How are they related?

In the confined phase, Z(N) chg’d loops = 0: how big are Z(N) neutral loops?

Z =
∫

dL exp(−V)

!R = tr LR efund = 1 , eadj = 0

V = m2 !adj + Σj λj !j , ej = 0

!adj =
1

N2 − 1
(|trL|2 − 1

)



Large N matrix models
Enormous simplifications at large N: e.g., 

As N=>∞, “factorization” => potential merely powers of the fundamental loop:

!adj ≈ |!|2 + 1/N2

VU(1)/N
2 = m2|!|2 + λ4(|!|2)2 + λ6(|!|2)3 + . . .

The global symmetry is reduced from U(1) to Z(N) by the term

VZ(N)/N
2 = +λ̃N ("N + ("∗)N ) + . . .

At large N, vary mass and couplings to reach:

confined phase:

deconfined phase:

Free energy of deconfined phase ~N^2 from # gluons.

〈!〉 #= 0 , 〈V〉/N2 ∼ 1

〈!〉 = 0 , 〈V〉/N2 = 0



Large N: van der Monde potential
Brezin, Ityzkson, Parisi & Zuber = BIPZ ‘78; Gross & Witten = G&W ‘81 
Kogut, Snow & Stone = KSS ‘82; Green & Karsch ‘84; Damgaard ‘87, D & Hasenbusch = D&H ‘94
Aharony + ... = AMMPR ‘03 Dumitru + ... = DHLOP ‘03;  Dumitru + ... = DLPS ‘04

VvdM/N2 = + !2 , ! < 1/2

VvdM/N2 = − log(2(1− !))/2 + 1/4 , ! > 1/2

G&W: the vdM potential is discontinuous, of third order, at 

               :  only mass term - no                     to  

               :  eigenvalue repulsion from vdM det. =>

! = 1/2

! < 1

! < 1/2

! > 1/2

!4 , !6 . . . !N

Do U(1) rotation so the fundamental loop,                      , is real & positive.

BIPZ +... AMMPR: minimize with respect to eigenvalues of 
=> “potential” from the van der Monde determinant

! = trL/N

L



Matrix models & the Gross-Witten point

Veff = VU(1) + VvdMSolutions minima of effective potential, 

Introduce new mass parameter

For                                                                                       > 0: confined
  
                                                                                            < 0: deconfined

Gross-Witten point:

AMMPR: take space = very small sphere, so gauge coupling small.

  spinoidal point,               , = Hagedorn temperature          
Hagedorn exponential growth in density states, not limiting temp.

=> at Gross-Witten point, Hagedorn temp. = deconfining trans. temp.                 
away from Gross-Witten point, Hagedorn ≠ deconfinement

m̃2 = m2 + 1

! < 1/2 Veff/N2 = + m̃2 !2

m̃2 = λ4 = λ6 = . . . = 0

THagm̃2 = 0

m̃2

m̃2



Near the Gross-Witten point
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All potentials have 3rd order discontinuity at ! = 1/2



At the Gross-Witten point: “critical” 1st order

Transition first order: latent heat nonzero, 

But “critical”: (physical) masses => 0, asymmetrically, at transition:

∂Veff (〈"〉)/∂m2 = 1/4

m2
phys =

∂2Veff

∂"2

∣∣∣∣
!=〈!〉

m2
phys ∼ m̃2 , m̃2 → 0+

m2
phys ∼

√
−m̃2 , m̃2 → 0−

Potential completely flat from 0 to 1/2.

Order parameter jumps at transition:

Non-analytic point in potential
coincides with new minimum.
KSS ‘82,  AMMPR ‘03, DHLOP ‘03

Mean field: varying m^2 ~ temperature.

〈!〉 : 0 → 1/2 , m̃2 = 0

!→

Veff ↑
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Gross-Witten = tri-critical point 

! < 1/2Veff/N2 = m̃2 !2 + λ4 !4 + λ6 !6 + . . .

At large N,

Phase diagram looks the same, but: tri-critical point is the Gross-Witten point

<= 2nd order line

1st order line =>

X

λ4 ↑

m̃2 →
Gross-Witten point

AMMPR:                             
Away from G-W pt along 
~ ordinary 1st order trans.: masses ≠ 0 
Jump in     

DLPS:                      Away from G-W point,
ordinary 1st order trans.’s: masses ≠ 0
Jump in      arbitrary 

Only G-W point “critical” 1st order: 
masses = 0 and jump in       (to 1/2)
But must tune     = 0 to reach G-W point.
(Other λ’s marginal or irrelevant)

λ4 != 0 , λ6 = 0
λ4 < 0

λ4 , λ6 != 0

〈!〉

λ4

〈!〉

〈!〉 ≥ 1/2



Matrix models, N < ∞
Matrix model:  4 ≤ N < ∞,  Gross-Witten pt = ordinary 1st order (masses ≠ 0)

N=3: (adjoint = octet) + decuplet:

                                       ~ cubic invariant, transition always 1st order
                                                       Svetitsky & Yaffe ‘82
                                                     

KSS:  at G-W pt,     : 0 => .485 ± .001 (~ 1/2!)
DLPS: with       ≠ 0, at transition jump in       can decrease from 1/2

N=2: G-W pt 2nd order transition (higher loops => Z(2) critical point)

D&H ‘94, DLPS: in a matrix model, N ≥ 2, all loops vanish in the confined phase

=> expectation values of Z(N) neutral loops in the confined phase,          ≠ 0, 
due to fluctuations about matrix model.

V/9 = m2 !8 + λ10 !10 + . . .

!10 = (trL trL2 + 1)/10

λ10 〈!〉

〈!R〉 = 〈V〉 = 0 , T < Td , ∀R

〈!adj〉

〈!〉



Renormalized Polyakov Loops

     Straight Polyakov loop:          Polyakov loop with two cusps, 0 & 1/2T
                                                                                               
                                                                                   τ↑: imaginary time,
                                                                                         0 => 1/T    

In d+1 spacetime dim.’s, T ≠0, ultraviolet divergences of straight loop ~
propagating field in d space dim.’s.  With cusp, 

Renormalized loop after “mass” ren.,
 R = irreducible representation:

3+1 dim.’s:                                                       (a=lattice spacing,     = Casimir)

Straight loops have no logarithm.   Loops with cusps do.

2+1 dim.’s: Straight loops have logarithm, no new log with cusps.

!̃R = ZR !R , ZR = e−mdiv
R /T

∫
ddp/p2

∼ 1/
√

p2

amdiv
R = +CR g2(1 + #g2 + . . .) CR

Gervais & Neveu ‘80. Polyakov ‘80. Dotsenko & Vergeles ‘80. Brandt, Gocksch, Neri, Sato ‘81, ‘82
Ivanov, Korchemsky & Radyushkin ‘86. K & R ‘87, ‘92. Belitksy, Gorsky & K ‘03.  
Kaczmarek, Karsch, Petreczsky & Zantow = KKPZ ‘02.  DHLOP ‘03. 



No bound on ren.’d loops

〈!̃R〉 − 1 ∼ −
(

1
T

)
CRg2

∫
d3k

k2 + m2
Debye

∼ (−)CRg2(−)(m2
Debye)

1/2

〈!̃R〉 ≈ exp
(

+
CR

N

(g2N)3/2

8π
√

3

)
=> negative “free energy”
McLerran & Svetitsky ‘82

Bare loop is a normalized trace =>

For renormalized loop:

=> IF                                                         in the continuum limit, a → 0,          
                                    bare loops vanish & there is no bound on ren’d loops.

Numerically: we find that all divergent masses always positive.
E.g.: as T →∞, ren’d loops approach 1 from above: (Gava & Jengo ‘81)

mdiv
R > 0 ∀ T , ZR = e−amdiv

R → 0

!̃R = !R/ZR ⇒ |〈!̃R〉| ≤ 1/ZR

|!R| ≤ 1

Smooth large N limit: CR ≈ #N + O(1) , N →∞



Ren.’d Polyakov loops on the lattice
Basic idea: compare two lattices,  same temperature, different lattice spacing.
           If a << 1/T, ren’d quantities the same. 

N_t = # time steps = 1/(aT) changes between the two lattices: get Z_R 

f cont
R

fdiv
R

SU(3) Wilson action, N_t = 4,6,8,10; # spatial steps = 3 N_t
Lattice coupling constant β = 6/g^2: related to temperature by Non-Pert. Ren.

Coupling for transition changes with N_t, 

=> to obtain the same T at different N_t, must compute at different β
Doable, not trivial.

βdeconf (Nt)

Numerically, we find f lat
R ≈ 0〈!̃R〉 = exp(−f cont

R )

log (|〈!R〉|) = −fdiv
R Nt + f cont

R + f lat
R

1
Nt

+ . . .



Bare triplet loop vs T,  Nt

Note scale=>
~ .3

Nt=4

Nt=6

Nt=8

Nt=10

Nt = # time
         steps.

Bare loop 
vanishes as
Nt →∞

Bare triplet 
loop↑

Td ↑ T/Td →



Bare octet  loop vs T, Nt

Bare octet 
loop↑

Nt=4

Nt=6

Nt=8
Nt=10

Note scale=>
~ .06

Sextet loop
very similar

Decuplet
loop only
measurable
at Nt=4

Td ↑
T/Td →



Bare |!3| vs Nt

|〈!3〉| ≡ exp(−m3/T )|〈!̃3〉|



Lattice SU(3): divergent “masses”
DHLOP: Z_R from same T, different lattice spacing.  Triplet, sextet, octet loops.
KKPZ: Z_R from short distance behavior of two-point functions.  Triplet loop.

amdiv
R ↑

Td ↑ T/Td →

At one loop, divergent masses
         ~ Casimir.

                   <= approximately
              valid,  ~ 3 T_d

        But sextet mass above octet
below 1.5 T_d

     <= Weak temperature
     variation in triplet mass

                  

−4
3

= C3

−3 = C8

−10/3 = C6



Lattice SU(3): renormalized Polyakov loops
At transition, jump in     to ~.4 (± 10%)〈!〉

Triplet loop ≠ 1 => non-perturbative gluon plasma for T_d => 3 T_d 
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Lattice: SU(3) close to SU(∞),  ~25%
At large N, “factorization” => all loops product of fundamental (& anti-fund.)
Migdal & Makeenko ‘80, Eguchi & Kawai ‘82, Damgaard ‘87, D&H ‘94

DHLOP: “spikes” in diff. loops
Corrections to factorization
small except just above T_d

δ"8 ≡ 〈"8〉 − |〈"3〉|2 ∼ 1/N2

δ"6 ≡ 〈"6〉 − 〈"3〉2 ∼ 1/N

max |δ"6| ∼ .25 @ 1.3 Td

max |δ"8| ∼ .2 @ 1.1 Td

<= max. 6 

max 8 =>

<= 8

<= 6

Max. sextet ~ spinoidal point = Hagedorn temp. AMMPR: max. adjoint “spike”?

Td ↑
T/Td →



Bare loops don’t factorize

Bare octet 
difference 
loop/bare 
octet loop: 
violations 
of factor.
50% @ 
Nt =4
200% @ 
Nt = 10.

Td ↑
T/Td →



  Lattice SU(3): masses ~ 0 at    :  near Gross-WittenTd
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FIG. 1:

APE, Columbia ‘89, Bielefeld ‘93 + ...

In confined phase, string tension 
from 2-pt function of Polyakov loops 
at large distances:

SU(3): versus zero temperature, at T_d 
the string tension is smaller by ~ 10.

Gross-Witten, SU(∞): jump to 1/2, masses = 0

Lattice SU(3): jump to ~.4, masses ~ 0

Use matrix models to quantify how close SU(3) 
is to the Gross-Witten point of SU(∞).

σ(T )
σ(0)

↑

.6=>

.1=>

〈!∗(x)!(0)〉 − |〈!〉|2 ∼ e−σ(T )x/T

Td ↑.9 Td ↑
T/Td →



Fluctuations in a matrix model
Up to now, only potential:

Lots of kinetic terms:  
for Wilson line
                                    
“electric loop” + induced:

For loops alone,

and even (N=3):

g’s & h’s = couplings.  Plus magnetic...

Fluctuations modify mean field equations. 
Start with simplest case: just adjoint loop in potential, ~ “mass” term.

Wel = Zel tr |DiL|2

Zel = g−2
el + gadj !adj + . . .

W̃ = tr (DiL)(DiL)( g̃3 !3 + . . .)

Wloop = Σj hj !j′ ∂i!j′′ ∂i!j′′′ , Σ ej = 0

V = m2 !adj + Σj λj !j , ej = 0



Matrix models & ren’d loops

T/Td →

3=>
8=> <= 6

<=10 ?

〈!̃R〉 ↑

Td ↑

OK fit with just adjoint loop, m^2 ~ temperature:
 
Fails near     : jump in        to .485, not ~.4 from lattice.  Need to add:
 (1) decuplet loop in potential,        big
 (2) triplet-sextet kinetic, h small

Use this m^2, plot all loops vs T =>

Deviations greatest for sextet loop,
but sextet very sensitive to (1)&(2)

Fit “spike” in sextet difference loop?

“Spike” in octet difference loop:
=> “spike” in octet coupling?

Mean field predicts decuplet loop!

m2 = .46 + .33 T/Td

λ10

Td 〈!3〉



Deconfinement in SU(3) close to Gross-Witten?
SU(N) matrix models agree with lattice results for the deconfining transition:

SU(2) second order: Redlich, Satz & Seixas ‘88...Engels & Scheidler ‘98 

SU(N), N≥4, first order: N = 4, 6, 8: Lucini, Teper, Wegner, ‘02, ‘03
         N = 4: Batrouni & Svetitsky ‘84; Gocksch & Okawa ‘84 ....Ohta & Wingate ‘00; Gavai ‘01

SU(3) first order, but weakly:
closer to 2nd order point of SU(2) or Gross-Witten point of SU(∞)?

But need to tune two parameters reach a tri-critical point, 
(e.g., temperature and concentration of two-component systems)

=> unnatural for SU(3) to be near the Gross-Witten (tri-critical) point

Accident? Is deconfinement in SU(4), SU(5)... close to the Gross-Witten point?

      Look for (large) decrease in the string tension just below 

m2 = λ4 = 0

Td


